Regularity of almost minimizers with free boundary
In this paper we study the local regularity of almost minimizers of the functional J ( u ) = ∫ Ω | ∇ u ( x ) | 2 + q + 2 ( x ) χ { u > 0 } ( x ) + q - 2 ( x ) χ { u < 0 } ( x ) where q ± ∈ L ∞ ( Ω ) . Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2015-09, Vol.54 (1), p.455-524 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the local regularity of almost minimizers of the functional
J
(
u
)
=
∫
Ω
|
∇
u
(
x
)
|
2
+
q
+
2
(
x
)
χ
{
u
>
0
}
(
x
)
+
q
-
2
(
x
)
χ
{
u
<
0
}
(
x
)
where
q
±
∈
L
∞
(
Ω
)
. Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt and Caffarelli, in J Reine Angew Math, 325:105–144,
1981
; Alt et al., in Trans Am Math Soc 282:431–461,
1984
; Caffarelli et al., in Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Non-compact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 8397. Contemporary Mathematics, vol. 350. American Mathematical Society, Providence,
2004
; DeSilva and Jerison, in J Reine Angew Math 635:121,
2009
). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-014-0792-z |