Information-Extreme Method for Classification of Observations with Categorical Attributes

An algorithm is proposed for information-extreme machine learning based on the adaptive coding of multitype primary features used in the recognition and optimization of geometric parameters of partitioning the space of secondary (unified) features into equivalence classes in the iterative approximat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2016-03, Vol.52 (2), p.224-231
Hauptverfasser: Dovbysh, A. S., Moskalenko, V. V., Rizhova, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm is proposed for information-extreme machine learning based on the adaptive coding of multitype primary features used in the recognition and optimization of geometric parameters of partitioning the space of secondary (unified) features into equivalence classes in the iterative approximation of the global maximum of an information criterion to its boundary value.
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-016-9818-1