Information-Extreme Method for Classification of Observations with Categorical Attributes
An algorithm is proposed for information-extreme machine learning based on the adaptive coding of multitype primary features used in the recognition and optimization of geometric parameters of partitioning the space of secondary (unified) features into equivalence classes in the iterative approximat...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2016-03, Vol.52 (2), p.224-231 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An algorithm is proposed for information-extreme machine learning based on the adaptive coding of multitype primary features used in the recognition and optimization of geometric parameters of partitioning the space of secondary (unified) features into equivalence classes in the iterative approximation of the global maximum of an information criterion to its boundary value. |
---|---|
ISSN: | 1060-0396 1573-8337 |
DOI: | 10.1007/s10559-016-9818-1 |