Seismic analysis for tall and irregular temple buildings: A case study of strong nonlinear viscoelastic dampers
Summary Viscoelastic (VE) dampers, composed of VE layers sandwiched between relative rigid steel plates, have been widely used as dissipation devices to improve performance of structures under dynamic loads. Corresponding analytical and experimental investigations have been carried out by many schol...
Gespeichert in:
Veröffentlicht in: | The structural design of tall and special buildings 2017-05, Vol.26 (7), p.np-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Viscoelastic (VE) dampers, composed of VE layers sandwiched between relative rigid steel plates, have been widely used as dissipation devices to improve performance of structures under dynamic loads. Corresponding analytical and experimental investigations have been carried out by many scholars. However, most of VE dampers studied before are typically traditional dampers applied in regular structures. This paper introduces a new type of VE damper with strong nonlinearity used in the complex and irregular structure of Nanjing Dabaoen Temple. The new VE dampers show obvious nonlinear behavior, improved capacity of dissipation, and larger additional stiffness compared to the traditional ones. Nanjing Dabaoen Temple is a high‐rise steel structure by use of 112 new VE dampers. To investigate dissipation characteristics and control effect of the VE dampers in the complex structure, we established a suitable finite element model using SAP2000 software in which the VE dampers were simulated by Maxwell and Wen models connected in parallel, and then nonlinear time history analysis is executed using seven ground motions of moderate earthquakes and three of major earthquakes. Analytical results indicate that control effect of the VE dampers on structural displacement is preferable to that on structural acceleration and shear force due to dampers' additional stiffness. In addition, owing to incremental deformation of VE dampers under major earthquakes, damping effect of the VE dampers on all structural responses under major earthquakes is more obvious than that under moderate earthquakes. Analytical methods and conclusions in this paper will provide significant reference for analysis, design, and application of complex high‐rise structures added with VE dampers. |
---|---|
ISSN: | 1541-7794 1541-7808 |
DOI: | 10.1002/tal.1352 |