Preparation and phase transition of FeOOH nanorods: strain effects on catalytic water oxidation

The evolution of the phase and morphology of FeOOH nanorods prepared by a hydrothermal method is studied via X-ray diffraction (XRD) and in situ transmission electron microscopy. The FeOOH nanorod with a tetragonal structure (β-FeOOH) is gradually converted into a rhombohedral Fe O nanorod by a simp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2017, Vol.9 (14), p.4751-4758
Hauptverfasser: Park, Gisang, Kim, Yong-Il, Kim, Young Heon, Park, Mira, Jang, Kyu Yeon, Song, Hyunjoon, Nam, Ki Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of the phase and morphology of FeOOH nanorods prepared by a hydrothermal method is studied via X-ray diffraction (XRD) and in situ transmission electron microscopy. The FeOOH nanorod with a tetragonal structure (β-FeOOH) is gradually converted into a rhombohedral Fe O nanorod by a simple thermal treatment. The existence of an intermediate FeOOH structure with high lattice strains during the phase transition is identified by Rietveld analysis using XRD. The electrochemical properties of the nanorods are investigated based on the crystal phases to elucidate their relative catalytic activities. The strained-FeOOH nanorods exhibited enhanced catalytic water oxidation activity and stability. Typically, the strained-FeOOH nanorods showed high electrochemical stability under neutral conditions, while tetragonal FeOOH nanorods under the same conditions showed rapid deactivation for water oxidation reaction.
ISSN:2040-3364
2040-3372
DOI:10.1039/c6nr09790a