Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading

Achieving a satisfactory energy-power combination in a supercapacitor that is based on all-carbon electrodes and operates in benign aqueous media instead of conventional organic electrolytes is a major challenge. For this purpose, we fabricated carbon nanoflakes (20-100 nm in thickness, 5-μm in widt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2017-05, Vol.10 (5), p.1767-1783
Hauptverfasser: Mao, Nan, Wang, Huanlei, Sui, Yang, Cui, Yongpeng, Pokrzywinski, Jesse, Shi, Jing, Liu, Wei, Chen, Shougang, Wang, Xin, Mitlin, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Achieving a satisfactory energy-power combination in a supercapacitor that is based on all-carbon electrodes and operates in benign aqueous media instead of conventional organic electrolytes is a major challenge. For this purpose, we fabricated carbon nanoflakes (20-100 nm in thickness, 5-μm in width) containing an unparalleled combination of a large surface area (3,000 m2-g-1 range) and mesoporosity (up to 72%). These huge-surface area functionalized carbons (HSAFCs) also had a substantial oxygen and nitrogen content (N10 wt.% combined), with a significant fraction of redox-active carboxyl/phenol groups in an optimized specimen. Their unique structure and chemistry resulted from a tailored single-step carbonization-activation approach employing (2-benzimidazolyl) acetonitrile combined with potassium hydroxide (KOH). The HSAFCs exhibited specific capacitances of 474 F-g-1 at 0.5 A.g-1 and 285 F-g-1 at 100 A.g-1 (charging time 〈 3 s) in an aqueous 2 M KOH solution. These values are among the highest reported, especially at high currents. When tested with a stable 1.8-V window in a 1 M Na2SO4 electrolyte, a symmetric supercapacitor device using the fabricated nanoflakes as electrodes yielded a normalized active mass of 24.4 Wh-kg-1 at 223 W·kg-1 and 7.3 Wh·kg-1 at 9,360 W·kg-1. The latter value corresponds to a charge time of 〈3 s. The cyclability of the devices was excellent, with 93% capacitance retention after 10,000 cycles. All the electrochemical results were achieved by employing electrodes with near-commercial mass loadings of 8 mg-cm-2.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-017-1486-6