The Noether-Lefschetz conjecture and generalizations

We prove the Noether-Lefschetz conjecture on the moduli space of quasi-polarized K3 surfaces. This is deduced as a particular case of a general theorem that states that low degree cohomology classes of arithmetic manifolds of orthogonal type are dual to the classes of special cycles, i.e. sub-arithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2017-05, Vol.208 (2), p.501-552
Hauptverfasser: Bergeron, Nicolas, Li, Zhiyuan, Millson, John, Moeglin, Colette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the Noether-Lefschetz conjecture on the moduli space of quasi-polarized K3 surfaces. This is deduced as a particular case of a general theorem that states that low degree cohomology classes of arithmetic manifolds of orthogonal type are dual to the classes of special cycles, i.e. sub-arithmetic manifolds of the same type. For compact manifolds this was proved in [ 3 ], here we extend the results of [ 3 ] to non-compact manifolds. This allows us to apply our results to the moduli spaces of quasi-polarized K3 surfaces.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-016-0695-z