The Noether-Lefschetz conjecture and generalizations
We prove the Noether-Lefschetz conjecture on the moduli space of quasi-polarized K3 surfaces. This is deduced as a particular case of a general theorem that states that low degree cohomology classes of arithmetic manifolds of orthogonal type are dual to the classes of special cycles, i.e. sub-arithm...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2017-05, Vol.208 (2), p.501-552 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the Noether-Lefschetz conjecture on the moduli space of quasi-polarized K3 surfaces. This is deduced as a particular case of a general theorem that states that low degree cohomology classes of arithmetic manifolds of orthogonal type are dual to the classes of special cycles, i.e. sub-arithmetic manifolds of the same type. For compact manifolds this was proved in [
3
], here we extend the results of [
3
] to non-compact manifolds. This allows us to apply our results to the moduli spaces of quasi-polarized K3 surfaces. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-016-0695-z |