A Uniform Model for Kirillov-Reshetikhin Crystals I: Lifting the Parabolic Quantum Bruhat Graph
We lift the parabolic quantum Bruhat graph (QBG) into the Bruhat order on the affine Weyl group and into Littelmann's poset on level-zero weights. We establish a quantum analog of Deodhar's Bruhat-minimum lift from a parabolic quotient of the Weyl group. This result asserts a remarkable co...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2015-01, Vol.2015 (7), p.1848-1901 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We lift the parabolic quantum Bruhat graph (QBG) into the Bruhat order on the affine Weyl group and into Littelmann's poset on level-zero weights. We establish a quantum analog of Deodhar's Bruhat-minimum lift from a parabolic quotient of the Weyl group. This result asserts a remarkable compatibility of the QBG on the Weyl group, with the cosets for every parabolic subgroup. Also, we generalize Postnikov's lemma from the QBG to the parabolic one; this lemma compares paths between two vertices in the former graph. The results in this paper will be applied in a second paper to establish a uniform construction of tensor products of one-column Kirillov-Reshetikhin (KR) crystals, and the equality, for untwisted affine root systems, between the Macdonald polynomial with t set to zero and the graded character of tensor products of one-column KR modules. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnt263 |