A Uniform Model for Kirillov-Reshetikhin Crystals I: Lifting the Parabolic Quantum Bruhat Graph

We lift the parabolic quantum Bruhat graph (QBG) into the Bruhat order on the affine Weyl group and into Littelmann's poset on level-zero weights. We establish a quantum analog of Deodhar's Bruhat-minimum lift from a parabolic quotient of the Weyl group. This result asserts a remarkable co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2015-01, Vol.2015 (7), p.1848-1901
Hauptverfasser: Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We lift the parabolic quantum Bruhat graph (QBG) into the Bruhat order on the affine Weyl group and into Littelmann's poset on level-zero weights. We establish a quantum analog of Deodhar's Bruhat-minimum lift from a parabolic quotient of the Weyl group. This result asserts a remarkable compatibility of the QBG on the Weyl group, with the cosets for every parabolic subgroup. Also, we generalize Postnikov's lemma from the QBG to the parabolic one; this lemma compares paths between two vertices in the former graph. The results in this paper will be applied in a second paper to establish a uniform construction of tensor products of one-column Kirillov-Reshetikhin (KR) crystals, and the equality, for untwisted affine root systems, between the Macdonald polynomial with t set to zero and the graded character of tensor products of one-column KR modules.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnt263