Control functionals for Monte Carlo integration

A non-parametric extension of control variâtes is presented.These leverage gradient information on the sampling density to achieve substantial variance reduction. It is not required that the sampling density be normalized. The novel contribution of this work is based on two important insights: a tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 2017-06, Vol.79 (3), p.695-718
Hauptverfasser: Oates, Chris J., Girolami, Mark, Chopin, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-parametric extension of control variâtes is presented.These leverage gradient information on the sampling density to achieve substantial variance reduction. It is not required that the sampling density be normalized. The novel contribution of this work is based on two important insights: a trade-off between random sampling and deterministic approximation and a new gradient-based function space derived from Stein's identity. Unlike classical control variâtes, our estimators improve rates of convergence, often requiring orders of magnitude fewer simulations to achieve a fixed level of precision. Theoretical and empirical results are presented, the latter focusing on integration problems arising in hierarchical models and models based on non-linear ordinary differential equations.
ISSN:1369-7412
0035-9246
1467-9868
0035-9246
DOI:10.1111/rssb.12185