Newton Algorithm on Constraint Manifolds and the 5-Electron Thomson Problem

We give a description of numerical Newton algorithm on a constraint manifold using only the ambient coordinates (usually Euclidean coordinates) and the geometry of the constraint manifold. We apply the numerical Newton algorithm on a sphere in order to find the critical configurations of the 5-elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2017-05, Vol.173 (2), p.563-583
Hauptverfasser: Birtea, Petre, Comănescu, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a description of numerical Newton algorithm on a constraint manifold using only the ambient coordinates (usually Euclidean coordinates) and the geometry of the constraint manifold. We apply the numerical Newton algorithm on a sphere in order to find the critical configurations of the 5-electron Thomson problem. As a result, we find a new critical configuration of a regular pentagonal type. We also make an analytical study of the critical configurations found previously and determine their nature using Morse–Bott theory. The last section contains an analytical study of critical configurations for Riesz s -energy of 5-electron on a sphere, and their bifurcation behavior is pointed out.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-016-1049-0