Novel Hyperbranched Polymers as Host Materials for Green Thermally Activated Delayed Fluorescence OLEDs
A series of novel hyperbranched polymers (HBPs) consisting ofa 2,7-subsituted 9-(heptadecan-9-yl)-9H-carbazole unit (A2+A2') and a tetra-substituted green thermally activated delayed fluorescence (TADF) dye of 2,3,5,6-tetra(9H- carbazol-9-yl)-4-pyridinecarbonitrile (4CzCNPy, B4) have been synthesize...
Gespeichert in:
Veröffentlicht in: | Chinese journal of polymer science 2017-04, Vol.35 (4), p.490-502 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of novel hyperbranched polymers (HBPs) consisting ofa 2,7-subsituted 9-(heptadecan-9-yl)-9H-carbazole unit (A2+A2') and a tetra-substituted green thermally activated delayed fluorescence (TADF) dye of 2,3,5,6-tetra(9H- carbazol-9-yl)-4-pyridinecarbonitrile (4CzCNPy, B4) have been synthesized via Suzuki cross-coupling reaction following an "Az+A2'+B4" method. The polymers are named according to the polymerization ratio of 4CzCNPy monomer (5 mol%, 10 mol% and 15 mol% for HBPs of P2-P4 respectively, and 0 mol% for the control linear polymer P1). Their thermal, optoelectronic and electrochemical properties have been characterized by a combination of techniques. All the polymers exhibit high thermal stability with the decomposition temperatures (Ta) above 400 ℃ and glass transition temperatures (Tg) up to 98℃. Unfortunately, the incorporation of TADF moiety into these HBP materials induced non-TADF characteristics. However, when the HBPs functionalized as the host for our previously developed 4CzCNPy TADF dopant in solution processed devices, maximum external quantum efficiency of 5.7% and current efficiency of 17.9 cd/A have been achieved in P3-based device, which is significantly higher than those of 1.5% and 4.2 cd/A for the linear polymer P1. |
---|---|
ISSN: | 0256-7679 1439-6203 |
DOI: | 10.1007/s10118-017-1881-1 |