High Damping and Mechanical Properties of Hydrogen-bonded Polyethylene Materials with Variable Contents of Hydroxyls: Effect of Hydrogen Bonding Density
Hydrogen bonding is considered to have significant effect on the interaction between polymeric chains and on the viscoelasticity of the polymeric materials. In this paper, we attempt to discuss the relationship between hydrogen bonding density and damping behavior and mechanical properties of polyet...
Gespeichert in:
Veröffentlicht in: | Chinese journal of polymer science 2017-05, Vol.35 (5), p.649-658 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen bonding is considered to have significant effect on the interaction between polymeric chains and on the viscoelasticity of the polymeric materials. In this paper, we attempt to discuss the relationship between hydrogen bonding density and damping behavior and mechanical properties of polyethylene-based polymeric materials. For this reason, a series of pendant chain hydrogen bonding polymers (PCHBP) with different hydrogen bonding density (HBD) were prepared by quantitatively changing the content of pendent hydroxyl groups on the main chain of polyethylene. It was found that PCItBP with low HBD showed similar properties to polyethylene, indicating that the property of the materials was dependent mainly on the structure of the main chain. However, PCHBP with high HBD exhibited two tandpeaks and a platform of loss modulus as well as a high storage modulus (about 400 MPa) at the second tand peak temperature, demonstrating that a polymeric material with high strength and damping properties was obtained. More importantly, the maximum of loss modulus showed a linear increase with the HBD, indicating that a higher HBD greatly improved the damping properties of the polymeric materials. |
---|---|
ISSN: | 0256-7679 1439-6203 |
DOI: | 10.1007/s10118-017-1918-5 |