Comparison of three different types of scaffolds preseeded with human bone marrow mononuclear cells on the bone healing in a femoral critical size defect model of the athymic rat

Large bone defects often pose major difficulties in orthopaedic surgery. The application of long‐term cultured stem cells combined with a scaffold lead to a significant improvement of bone healing in recent experiments but is strongly restricted by European Union law. Bone marrow mononuclear cells (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tissue engineering and regenerative medicine 2018-03, Vol.12 (3), p.653-666
Hauptverfasser: Janko, Maren, Sahm, Julian, Schaible, Alexander, Brune, Jan C., Bellen, Marlene, Schroder, Katrin, Seebach, Caroline, Marzi, Ingo, Henrich, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large bone defects often pose major difficulties in orthopaedic surgery. The application of long‐term cultured stem cells combined with a scaffold lead to a significant improvement of bone healing in recent experiments but is strongly restricted by European Union law. Bone marrow mononuclear cells (BMC), however, can be isolated and transplanted within a few hours and have been proven effective in experimental models of bone healing. The effectivity of the BMC‐supported therapy might be influenced by the type of scaffold. Hence, we compared three different scaffolds serving as a carrier for BMC in a rat femoral critical size defect with regard to the osteogenic activity in the defect zone. Human demineralized bone matrix (DBM), bovine cancellous bone hydroxyapatite ceramic (BS), or β‐tricalcium phosphate (β‐TCP) were seeded with human BMC and hereafter implanted into critically sized bone defects of male athymic nude rats. Autologous bone served as a control. Gene activity was measured after 1 week, and bone formation was analysed histologically and radiologically after 8 weeks. Generally, regenerative gene expression (BMP2, RUNX2, VEGF, SDF‐1, and RANKL) as well as bony bridging and callus formation was observed to be most pronounced in defects filled with autologous bone, followed in descending order by DBM, β‐TCP, and BS. Although DBM was superior in most aspects of bone regeneration analysed in comparison to β‐TCP and BS, the level of autologous bone could not be attained.
ISSN:1932-6254
1932-7005
DOI:10.1002/term.2484