Searching for Added Value in Simulating Climate Extremes with a High-Resolution Regional Climate Model over Western Canada
We evaluate the capacity of a regional climate model to represent observed extreme temperature and precipitation events and also examine the impact of increased resolution, in an effort to identify added value in this respect. Two climate simulations of western Canada (WCan) were conducted with the...
Gespeichert in:
Veröffentlicht in: | Atmosphere-ocean 2016-08, Vol.54 (4), p.364-384 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We evaluate the capacity of a regional climate model to represent observed extreme temperature and precipitation events and also examine the impact of increased resolution, in an effort to identify added value in this respect. Two climate simulations of western Canada (WCan) were conducted with the Canadian Regional Climate Model (version 4) at 15 (CRCM15) and 45 km (CRCM45) horizontal resolution driven at the lateral boundaries by data from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-40) for the period 1973-1995. The simulations were evaluated using the spline-interpolated dataset ANUSPLIN, a daily observational gridded surface temperature and precipitation product with a nominal resolution of approximately 10 km. We examine a range of climate extremes, comprising the 10th and 90th percentiles of daily maximum (TX) and minimum (TN) temperatures, the 90th percentile of daily precipitation (PR90), and the 27 core Climate Daily Extremes (CLIMDEX) indices.
Both simulations exhibit cold biases compared with observations over WCan, with the bias exacerbated at higher resolution, suggesting little added value for temperature overall. There are instances, however, of regional improvement in the spatial pattern of temperature extremes at the higher resolution of CRCM15 (e.g., the CLIMDEX index for the annual number of days when TX > 25°C). The high-resolution simulations also reveal similarly localized features in precipitation (e.g., rain shadows) that are not resolved at the 45 km resolution. With regard to precipitation extremes, although both simulations generally display wet biases, CRCM15 features a reduced bias in PR90 in all seasons except winter. This improvement occurs despite the fact that spatial and interannual variability of PR90 in CRCM15 is significantly overestimated relative to both CRCM45 and ANUSPLIN. We posit that these characteristics are the result of demonstrable differences between corresponding topographical datasets used in the gridded observations and CRCM, the resulting errors propagated to physical variables tied to elevation and the beneficial effect of subsequent spatial averaging. Because topographical input is often discordant between simulations and gridded observations, it is argued that a limited form of spatial averaging may contribute added value beyond that which has already been noted in previous studies with respect to small-scale climate variability. |
---|---|
ISSN: | 0705-5900 1480-9214 |
DOI: | 10.1080/07055900.2016.1158146 |