A carbonyl reductase from Candida parapsilosis ATCC 7330: substrate selectivity and enantiospecificity
Candida parapsilosis ATCC 7330, a rich source of highly stereospecific oxidoreductases, catalyzes oxidation-reduction of a plethora of compounds yielding industrially important intermediates. An (S)-specific carbonyl reductase (SRED) purified and characterized from this yeast is reported here. (R)-S...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2017-05, Vol.15 (19), p.4165-4171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Candida parapsilosis ATCC 7330, a rich source of highly stereospecific oxidoreductases, catalyzes oxidation-reduction of a plethora of compounds yielding industrially important intermediates. An (S)-specific carbonyl reductase (SRED) purified and characterized from this yeast is reported here. (R)-Specific carbonyl reductase (CpCR) was reported by us earlier. SRED asymmetrically reduces ketones with excellent enantiospecificity (ee > 99%) and α-ketoesters with higher catalytic activity but moderate enantiospecificity (ee 70%) in the presence of NADPH. Minimal activity is shown towards the reduction of aldehydes. While the reduction of α-ketoesters with SRED can occur with either NADPH or NADH, for ketone reduction SRED requires NADPH specifically. SRED with a subunit molecular weight of 30 kDa shows optimal activity at pH 5.0 and 25 °C, and its activity is affected by Cu
. Taken together, SRED and CpCR offer substrates which on asymmetric reduction give products of opposite absolute configurations. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c7ob00340d |