Mushrooms as Efficient Solar Steam‐Generation Devices

Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-07, Vol.29 (28), p.n/a
Hauptverfasser: Xu, Ning, Hu, Xiaozhen, Xu, Weichao, Li, Xiuqiang, Zhou, Lin, Zhu, Shining, Zhu, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam‐generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella‐shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low‐cost materials for solar steam generation, but also provide inspiration for the future development of high‐performance solar thermal conversion devices. Mushrooms can, surprisingly, enable efficient solar steam generation (≈78% under 1 sun illumination), as their natural structures possess the excellent properties of light absorption, thermal management with minimized heat loss, efficient water supply, and vapor escape.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201606762