Stemflow-induced spatial heterogeneity of radiocesium concentrations and stocks in the soil of a broadleaved deciduous forest

The transport of radiocesium from the canopy and quantification of the spatial distribution of radiocesium in the soil of konara oak forests are important to better understand the variability of 137Cs stocks in the soil between proximal and distal stem areas as well as fine-scale variations around t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2017-12, Vol.599-600, p.1013-1021
Hauptverfasser: Imamura, Naohiro, Levia, Delphis F., Toriyama, Jumpei, Kobayashi, Masahiro, Nanko, Kazuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transport of radiocesium from the canopy and quantification of the spatial distribution of radiocesium in the soil of konara oak forests are important to better understand the variability of 137Cs stocks in the soil between proximal and distal stem areas as well as fine-scale variations around the tree trunk. Moreover, a better understanding of fine-scale spatial variabilities of 137Cs concentrations and stocks will provide insights for optimizing soil sampling strategies to provide a more robust estimation of contamination at the stand scale. This study aims to elucidate the transport of 137Cs by stemflow in a radioactively contaminated konara oak forest in Tsukuba, Japan by describing and quantifying the fine-scale spatial distribution of 137Cs in the soil and preferential flowpaths of stemflow on the tree stem by a dye tracing experiment. 137Cs concentrations and stocks were higher in the soils of the proximal stem area than distal stem area when they corresponded with the preferential flowpaths of stemflow. There was a significant relationship between canopy projection area of individual trees and average soil 137Cs concentrations and stocks, even though canopies of the trees overlapped. Our results demonstrate that the spatiality of 137Cs concentrations and stocks in the soil of the proximal stem area are governed (at least partially) by the preferential flowpaths of stemflow along the tree trunk. In addition, higher 137Cs concentrations and stocks in the near-trunk soils of trees with larger crown areas might be caused by an enhanced ability to capture dry deposition. [Display omitted] •Inputs of Fukushima-derived Cs were examined in the soil of a contaminated forest.•Cs concentrations were higher in the soils of the proximal than distal stem area.•Spatiality of Cs stocks is partly governed by preferential flowpaths of stemflow.•Cs soil stocks were higher under trees with larger canopy projection areas.•Soil sampling schema must account for Cs circumferential variation near tree stems.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2017.05.017