Modeling intra- and intermolecular correlations for linear and branched polymers using a modified test-chain self-consistent field theory

A modified test-chain self-consistent field theory (SCFT) is presented to study the intra- and intermolecular correlations of linear and branched polymers in various solutions and melts. The key to the test-chain SCFT is to break the the translational symmetry by fixing a monomer at the origin of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-04, Vol.95 (4-1), p.042502-042502, Article 042502
Hauptverfasser: Hu, Renfeng, Wu, David T, Wang, Dapeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A modified test-chain self-consistent field theory (SCFT) is presented to study the intra- and intermolecular correlations of linear and branched polymers in various solutions and melts. The key to the test-chain SCFT is to break the the translational symmetry by fixing a monomer at the origin of a coordinate. This theory successfully describes the crossover from self-avoiding walk at short distances to screened random walk at long distances in a semidilute solution or melt. The calculations indicated that branching enhances the swelling of polymers in melts and influences stretching at short distances. The test-chain SCFT calculations show good agreement with experiments and classic polymer theories. We highlight that the theory presented here provides a solution to interpret the polymer conformation and behavior under various conditions within the framework of one theory.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.95.042502