Self-Polymerization of Dopamine in Acidic Environments without Oxygen

An alkaline environment and the presence of oxygen are essential requirements for dopamine polymerization. In this study, we are the first to demonstrate the self-polymerization of dopamine through plasma-activated water (PAW) under acidic environments (pH < 5.5). Resulting poly­(dopamine) (PDA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-06, Vol.33 (23), p.5863-5871
Hauptverfasser: Chen, Tung-Po, Liu, Tianchi, Su, Tsan-Liang, Liang, Junfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An alkaline environment and the presence of oxygen are essential requirements for dopamine polymerization. In this study, we are the first to demonstrate the self-polymerization of dopamine through plasma-activated water (PAW) under acidic environments (pH < 5.5). Resulting poly­(dopamine) (PDA) was characterized using Nanosizer, SEM, FTIR, UV–vis, 1H NMR, and fluorescence spectrophotometers and proved to have similar physical and chemical properties to those polymerized under a basic condition, except that the PDA particles formed in PAW were more stable and hardly aggregated at varied pHs. The PAW polymerization method avoids alkaline solutions and the presence of oxygen and thus extends the applications of dopamine polymerization, particularly in biomedical and pharmaceutical sciences.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.7b01127