Distribution and sensorial relevance of volatile organic compounds emitted throughout wastewater biosolids processing
A diverse range of volatile organic compounds (VOCs) are emitted from wastewater biosolids processing. Odorous emissions are predominately made up of volatile sulfur compounds (VSCs) which are typically the only odorants measured. However, a range of VOCs are known to contribute to malodours yet pre...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2017-12, Vol.599-600, p.663-670 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A diverse range of volatile organic compounds (VOCs) are emitted from wastewater biosolids processing. Odorous emissions are predominately made up of volatile sulfur compounds (VSCs) which are typically the only odorants measured. However, a range of VOCs are known to contribute to malodours yet previous studies often overlook the contribution of VOCs in comparison with VSCs. This study aims to evaluate how emissions are affected by different biosolids processing configurations, and if any non-sulfur VOCs should be included in odour measurement and management. Non-sulfur VOCs emitted from biosolids throughout six wastewater treatment plants in the Sydney, Australia region were measured at six locations on average twice each week over 2–3weeks at each site. Variations in types of VOCs emitted throughout and between the sites were assigned to differences in WWTP processing configurations, plant operation and variations in industrial and municipal flows to the sewer network, referred to as sewer catchments. The presence of VOCs is likely due to biotic generation as well as industrial or residential additions to the sewer network. The dewatered and stored biosolids samples had the highest levels of VOC emissions. Sensorially important odorants were p-cresol and butanoic acid, based on the frequency of detection and odour activity values. Other compounds with a high risk of nuisance impacts were trimethylamine, indole and phenol emitted from the dewatered and stored biosolids, and volatile fatty acids from the anaerobic digester inlet and outlet at one particular site. The findings show that non-sulfur VOCs should be added to odorant monitoring campaigns at WWTPs. Identification of VOCs as sensorially important odorants opens opportunities for the more efficient management of nuisance odours, through targeted odour control or process improvement.
[Display omitted]
•Non-sulfur VOCs can contribute to odour characters, yet are rarely monitored.•Comprehensive analysis of biosolids emissions and composition at 6 sites conducted.•Detected VOCs result from organic matter degradation and sewer catchment inputs.•Sensorially-relevant VOCs were p-cresol, trimethylamine, indole and VFAs.•VOC emission variations throughout sites and can inform management approaches. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2017.04.129 |