Development of Lennard-Jones and Buckingham Potentials for Lanthanoid Ions in Water
New sets of Lennard-Jones and Buckingham potentials have been developed to be used in classical molecular dynamics simulations of Ln3+-containing systems for the whole lanthanoid series. The force-field parameters have been refined by directly comparing the hydration structure obtained from the simu...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2017-06, Vol.56 (11), p.6214-6224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New sets of Lennard-Jones and Buckingham potentials have been developed to be used in classical molecular dynamics simulations of Ln3+-containing systems for the whole lanthanoid series. The force-field parameters have been refined by directly comparing the hydration structure obtained from the simulations with the extended X-ray absorption fine structure (EXAFS) experimental data, in order to reproduce Ln3+-water EXAFS experimentally inferred mean distances. Analysis of the simulation results has shown that both Lennard-Jones and Buckingham potentials are able to properly describe the radial distribution of water molecules around the Ln3+ ions, the smooth decrease of the hydration number along the lanthanoid series, as well as the geometry of the first-shell hydration complex formed by Ln3+ ions in water. The newly optimized interaction potential parameters can be used in conjunction with force fields available in the literature to investigate the solvation properties of Ln3+ ions in different disordered systems. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.7b00207 |