Self‐Assembled Au/CdSe Nanocrystal Clusters for Plasmon‐Mediated Photocatalytic Hydrogen Evolution
Plasmon‐mediated photocatalytic systems generally suffer from poor efficiency due to weak absorption overlap and thus limited energy transfer between the plasmonic metal and the semiconductor. Herein, a near‐ideal plasmon‐mediated photocatalyst system is developed. Au/CdSe nanocrystal clusters (NCs)...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-07, Vol.29 (27), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plasmon‐mediated photocatalytic systems generally suffer from poor efficiency due to weak absorption overlap and thus limited energy transfer between the plasmonic metal and the semiconductor. Herein, a near‐ideal plasmon‐mediated photocatalyst system is developed. Au/CdSe nanocrystal clusters (NCs) are successfully fabricated through a facile emulsion‐based self‐assembly approach, containing Au nanoparticles (NPs) of size 2.8, 4.6, 7.2, or 9.0 nm and CdSe quantum dots (QDs) of size ≈3.3 nm. Under visible‐light irradiation, the Au/CdSe NCs with 7.2 nm Au NPs afford very stable operation and a remarkable H2‐evolution rate of 73 mmol gCdSe−1 h−1 (10× higher than bare CdSe NCs). Plasmon resonance energy transfer from the Au NPs to the CdSe QDs, which enhances charge‐carrier generation in the semiconductor and suppresses bulk recombination, is responsible for the outstanding photocatalytic performance. The approach used here to fabricate the Au/CdSe NCs is suitable for the construction of other plasmon‐mediated photocatalysts.
Highly efficient plasmon‐mediated photocatalysts based on Au/CdSe nanocrystal clusters (NCs) are successfully fabricated through an emulsion‐based self‐assembly approach. The Au/CdSe NCs synergistically harness the excellent visible‐light‐absorption properties of CdSe quantum dots and Au nanoparticles, affording a remarkable H2 evolution rate of 73 mmol gCdSe−1 h−1 in aqueous solution under visible‐light illumination and excellent operational stability. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201700803 |