IL-6 promotes epithelial-to-mesenchymal transition of human peritoneal mesothelial cells possibly through the JAK2/STAT3 signaling pathway
Long-term peritoneal dialysis (PD) therapy results in functional and structural alteration of the peritoneal membrane, including epithelial-to-mesenchymal transition (EMT). Interleukin 6 (IL-6) is a local pleiotropic cytokine, hypothesized to play an important role in EMT. This study was designed to...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Renal physiology 2017-08, Vol.313 (2), p.F310-F318 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long-term peritoneal dialysis (PD) therapy results in functional and structural alteration of the peritoneal membrane, including epithelial-to-mesenchymal transition (EMT). Interleukin 6 (IL-6) is a local pleiotropic cytokine, hypothesized to play an important role in EMT. This study was designed to investigate the role of IL-6 in EMT and peritoneal membrane dysfunction in long-term PD patients by assessing the level of IL-6 in dialysate and exploring the relationship between IL-6, the related signaling pathway JAK2/STAT3, and EMT, using in vitro cellular and molecular techniques. Plasma and dialysate levels of IL-6 were significantly higher in PD ultrafiltration failure patients compared with patients without ultrafiltration failure and were negatively correlated with measures of PD adequacy. In vitro IL-6 treatment changed human peritoneal mesothelial cell phenotype from a typical cobblestone-like to a fibroblast-like appearance and increased cell viability. IL-6 treatment increased α-smooth muscle actin and vascular endothelial growth factor expression but decreased E-cadherin expression. IL-6 treatment activated the JAK/STAT signaling pathway. However, the JAK2/STAT3 inhibitor WP1066 prevented IL-6-induced activation of the JAK2/STAT3 pathway and EMT. We conclude that IL-6 promotes the EMT process, possibly by activating the JAK2/STAT3 signaling pathway. IL-6 may serve as a novel therapeutic target for preventing EMT, and preservation of the peritoneal membrane may arise from these studies. |
---|---|
ISSN: | 1931-857X 1522-1466 |
DOI: | 10.1152/ajprenal.00428.2016 |