Absence of suppressor of cytokine signaling 2 turns cardiomyocytes unresponsive to LIF-dependent increases in Ca super( 2+) levels

Little is known regarding the role of suppressor of cytokine signaling (SOCS) in the control of cytokine signaling in cardiomyocytes. We investigated the consequences of SOCS2 ablation for leukemia inhibitory factor (LIF)-induced enhancement of intracellular Ca2+ ([Ca2+]i) transient by performing ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2017-04, Vol.312 (4), p.C478-C478
Hauptverfasser: Rocha-Resende, Cibele, de Jesus, Itamar Couto Guedes, Roman-Campos, Danilo, Miranda, Artur S, Alves, Fabiana, Resende, Rodrigo Ribeiro, Cruz, Jader dos Santos, Machado, Fabiana Simao, Guatimosim, Silvia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Little is known regarding the role of suppressor of cytokine signaling (SOCS) in the control of cytokine signaling in cardiomyocytes. We investigated the consequences of SOCS2 ablation for leukemia inhibitory factor (LIF)-induced enhancement of intracellular Ca2+ ([Ca2+]i) transient by performing experiments with cardiomyocytes from SOCS2-knockout (ko) mice. Similar levels of SOCS3 transcripts were seen in cardiomyocytes from wild-type and SOCS2-ko mice, while SOCS1 mRNA was reduced in SOCS2-ko. Immunoprecipitation experiments showed increased SOCS3 association with gp130 receptor in SOCS2-ko myocytes. Measurements of Ca2+ in wild-type myocytes exposed to LIF showed a significant increase in the magnitude of the Ca2+ transient. This change was absent in LIF-treated SOCS2-ko cells. LIF activation of ERK and STAT3 was observed in both wild-type and SOCS2-ko cells, indicating that in SOCS2-ko, LIF receptors were functional, despite the lack of effect in the Ca2+ transient. In wild-type cells, LIF-induced increase in [Ca2+]i and phospholamban Thr17 [PLN(Thr17)] phosphorylation was inhibited by KN-93, indicating a role for CaMKII in LIF-induced Ca2+ raise. LIF-induced phosphorylation of PLN(Thr17) was abrogated in SOCS2-ko myocytes. In wild-type cardiomyocytes, LIF treatment increased L-type Ca2+ current (I sub( Ca,L)), a key activator of CaMKII in response to LIF. Conversely, SOCS2-ko myocytes failed to activate I sub( Ca,L) in response to LIF, providing a rationale for the lack of LIF effect on Ca2+ transient. Our data show that absence of SOCS2 turns cardiomyocytes unresponsive to LIF-induced [Ca2+] raise, indicating that endogenous levels of SOCS2 are crucial for full activation of LIF signaling in the heart.
ISSN:0363-6143