PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity

Summary During the infection of host plants, pathogens can deliver virulence‐associated ‘effector’ proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal path...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2017-05, Vol.19 (5), p.1717-1729
Hauptverfasser: Cheng, Yulin, Wu, Kuan, Yao, Juanni, Li, Shumin, Wang, Xiaojie, Huang, Lili, Kang, Zhensheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary During the infection of host plants, pathogens can deliver virulence‐associated ‘effector’ proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal pathogen in wheat production worldwide. Here, they report their findings on an in planta highly induced candidate effector from Pst, PSTha5a23. The PSTha5a23 gene is unique to Pst and shows a low level of intra‐species polymorphism. It has a functional N‐terminal signal peptide and is translocated to the host cytoplasm after infection. Overexpression of PSTha5a23 in Nicotiana benthamiana was found to suppress the programmed cell death triggered by BAX, PAMP‐INF1 and two resistance‐related mitogen‐activated protein kinases (MKK1 and NPK1). Overexpression of PSTha5a23 in wheat also suppressed pattern‐triggered immunity (PTI)‐associated callose deposition. In addition, silencing of PSTha5a23 did not change Pst virulence phenotypes; however, overexpression of PSTha5a23 significantly enhanced Pst virulence in wheat. These results indicate that the Pst candidate effector PSTha5a23 plays an important role in plant defense suppression and rust pathogenicity, and also highlight the utility of gene overexpression in plants as a tool for studying effectors from obligate biotrophic pathogens.
ISSN:1462-2912
1462-2920
DOI:10.1111/1462-2920.13610