Dynamic undocking and the quasi-bound state as tools for drug discovery
There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein–ligand complexes, which is notoriously difficult. We adopt an alternative...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2017-03, Vol.9 (3), p.201-206 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein–ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other ‘thermodynamic’ methods. We demonstrate the potential of the docking–undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40%.
Structure-based drug design has generally focused on calculating binding free energies of protein–ligand complexes. It has now been shown that structural, rather than thermodynamic, stability — specifically, the work necessary to reach a quasi-bound state in which the ligand has just broken the most important contact with the receptor — can be calculated and used as a tool in virtual screening. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.2660 |