The distribution of vinculin to lipid rafts plays an important role in sensing stiffness of extracellular matrix

Extracellular matrix (ECM) stiffness regulates cell differentiation, survival, and migration. Our previous study has shown that the interaction of the focal adhesion protein vinculin with vinexin α plays a critical role in sensing ECM stiffness and regulating stiffness-dependent cell migration. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2017-06, Vol.81 (6), p.1136-1147
Hauptverfasser: Nagasato, Ayaka Ichikawa, Yamashita, Hiroshi, Matsuo, Michinori, Ueda, Kazumitsu, Kioka, Noriyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular matrix (ECM) stiffness regulates cell differentiation, survival, and migration. Our previous study has shown that the interaction of the focal adhesion protein vinculin with vinexin α plays a critical role in sensing ECM stiffness and regulating stiffness-dependent cell migration. However, the mechanism how vinculin-vinexin α interaction affects stiffness-dependent cell migration is unclear. Lipid rafts are membrane microdomains that are known to affect ECM-induced signals and cell behaviors. Here, we show that vinculin and vinexin α can localize to lipid rafts. Cell-ECM adhesion, intracellular tension, and a rigid ECM promote vinculin distribution to lipid rafts. The disruption of lipid rafts with Methyl-β-cyclodextrin impaired the ECM stiffness-mediated regulation of vinculin behavior and rapid cell migration on rigid ECM. These results indicate that lipid rafts play an important role in ECM-stiffness regulation of cell migration via vinculin. Vinculin is in non-raft on soft ECM. Rigid ECM promotes vinculin binding to vinexin α and PIP 2 , leading to distribution to raft and enhanced migration
ISSN:0916-8451
1347-6947
DOI:10.1080/09168451.2017.1289074