Central RFRP-3 Stimulates LH Secretion in Male Mice and Has Cycle Stage–Dependent Inhibitory Effects in Females

RFamide-related peptide (RFRP)-3 is a neuropeptide thought to play an inhibitory role in the regulation of reproduction in various mammalian species, although some stimulatory effects have been reported. To date, the effects of RFRP-3 on gonadotropin secretion have been scarcely studied in mice. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2017-09, Vol.158 (9), p.2873-2883
Hauptverfasser: Ancel, Caroline, Inglis, Megan A, Anderson, Greg M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RFamide-related peptide (RFRP)-3 is a neuropeptide thought to play an inhibitory role in the regulation of reproduction in various mammalian species, although some stimulatory effects have been reported. To date, the effects of RFRP-3 on gonadotropin secretion have been scarcely studied in mice. The aim of the current study was to characterize the effect of RFRP-3 administration on gonadotropin secretion in male and female mice. Adult intact and castrated male mice received acute central injections of 0.5 to 5 nmol of RFRP-3, and luteinizing hormone (LH) concentration was assayed in tail-tip blood samples. RFRP-3 had a dose-dependent stimulatory effect on LH secretion when administered centrally to both intact and castrated mice, and this effect was diminished when RFRP-3 was administered to kisspeptin receptor knockout mice. In female mice, central RFRP-3 had an inhibitory effect on LH secretion when administered at the time of the preovulatory LH surge in intact mice, or of an estradiol-induced LH surge in ovariectomized mice. Conversely, central RFRP-3 administration had no effect on LH levels in intact diestrus or ovariectomized, low-dose estradiol-implanted mice. Finally, peripheral administration of RFRP-3 to intact males and to females at the time of the preovulatory LH surge or during diestrus had no effect on LH secretion. Taken together, these results provide a detailed description of sex- and cycle stage–dependent effects of RFRP-3 on gonadotrophin secretion in mice. Moreover, it appears that the stimulatory effects are mediated in part by the receptor for kisspeptin, a potent stimulator of the reproductive axis.This work investigates the effect of RFRP-3 on LH secretion in intact and castrated male and female mice. The results show sex-dependent differences in the effects.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2016-1902