Degradation of Extracellular Antibiotic Resistance Genes with UV254 Treatment

Disinfected wastewater effluent contains a complex mixture of biomolecules including DNA. If intact genes conveying antibiotic resistance survive the disinfection process, environmental bacteria may take them up. We treated plasmid pWH1266, which contains ampicillin resistance gene bla TEM‑1 and tet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-06, Vol.51 (11), p.6185-6192
Hauptverfasser: Chang, Pin Hsuan, Juhrend, Brianna, Olson, Terese M, Marrs, Carl F, Wigginton, Krista R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disinfected wastewater effluent contains a complex mixture of biomolecules including DNA. If intact genes conveying antibiotic resistance survive the disinfection process, environmental bacteria may take them up. We treated plasmid pWH1266, which contains ampicillin resistance gene bla TEM‑1 and tetracycline resistance gene tetA, with UV254 doses up to 430 mJ/cm2 and studied the ability of those genes to be acquired by Acinetobacter baylyi. The plasmids required approximately 20–25 mJ/cm2 per log10 loss of transformation efficiency. We monitored plasmid DNA degradation using gel electrophoresis and qPCR with both short amplicons (∼200 bps, representative of ARG amplicon lengths commonly used for environmental monitoring) and long amplicons (800–1200 bps, designed to cover the entire resistance genes). The rate of transformability loss due to UV254 treatment was approximately 20× and 2× larger than the rate of gene degradation measured with the short and long amplicons qPCR, respectively. When extrapolated to account for the length of the entire pWH1266 plasmid, the qPCR rate constants were 2–7× larger than the rate constants measured with transformation assays. Gel electrophoresis results confirmed that DNA cleavage was not a major inactivating mechanism. Overall, our results demonstrate that qPCR conservatively measures the potential for a gene to be transformed by environmental bacteria following UV254 treatment.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.7b01120