Progress in Molecular Dynamics Simulations of Gram-Negative Bacterial Cell Envelopes

Bacteria are protected by complex molecular architectures known as the cell envelope. The cell envelope is composed of regions with distinct chemical compositions and physical properties, namely, membranes and a cell wall. To develop novel antibiotics to combat pathogenic bacteria, molecular level k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2017-06, Vol.8 (11), p.2513-2518
Hauptverfasser: Boags, Alister, Hsu, Pin-Chia, Samsudin, Firdaus, Bond, Peter J, Khalid, Syma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacteria are protected by complex molecular architectures known as the cell envelope. The cell envelope is composed of regions with distinct chemical compositions and physical properties, namely, membranes and a cell wall. To develop novel antibiotics to combat pathogenic bacteria, molecular level knowledge of the structure, dynamics, and interplay between the chemical components of the cell envelope that surrounds bacterial cells is imperative. In addition, conserved molecular patterns associated with the bacterial envelope are recognized by receptors as part of the mammalian defensive response to infection, and an improved understanding of bacteria–host interactions would facilitate the search for novel immunotherapeutics. This Perspective introduces an emerging area of computational biology: multiscale molecular dynamics simulations of chemically complex models of bacterial lipids and membranes. We discuss progress to date, and identify areas for future development that will enable the study of aspects of the membrane components that are as yet unexplored by computational methods.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.7b00473