Glucagon-like peptide-1 receptor is involved in learning and neuroprotection

Glucagon-like peptide-1 (GLP-1) is a gut peptide that, together with its receptor, GLP-1R, is expressed in the brain. Here we show that intracerebroventricular (i.c.v.) GLP-1 and [Ser(2)]exendin(1–9) (HSEGTFTSD; homologous to a conserved domain in the glucagon/GLP-1 family) enhance associative and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2003-09, Vol.9 (9), p.1173-1179
Hauptverfasser: During, Matthew J, Cao, Lei, Zuzga, David S, Francis, Jeremy S, Fitzsimons, Helen L, Jiao, Xiangyang, Bland, Ross J, Klugmann, Matthias, Banks, William A, Drucker, Daniel J, Haile, Colin N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucagon-like peptide-1 (GLP-1) is a gut peptide that, together with its receptor, GLP-1R, is expressed in the brain. Here we show that intracerebroventricular (i.c.v.) GLP-1 and [Ser(2)]exendin(1–9) (HSEGTFTSD; homologous to a conserved domain in the glucagon/GLP-1 family) enhance associative and spatial learning through GLP-1R. [Ser(2)]exendin(1–9), but not GLP-1, is also active when administered peripherally. GLP-1R-deficient mice have a phenotype characterized by a learning deficit that is restored after hippocampal Glp1r gene transfer. In addition, rats overexpressing GLP-1R in the hippocampus show improved learning and memory. GLP-1R-deficient mice also have enhanced seizure severity and neuronal injury after kainate administration, with an intermediate phenotype in heterozygotes and phenotypic correction after Glp1r gene transfer in hippocampal somatic cells. Systemic administration of [Ser(2)]exendin(1–9) in wild-type animals prevents kainate-induced apoptosis of hippocampal neurons. Brain GLP-1R represents a promising new target for both cognitive-enhancing and neuroprotective agents.
ISSN:1078-8956
1546-170X
DOI:10.1038/nm919