Loss of GABAergic neuronal phenotype in primary cerebellar cultures following blockade of glutamate reuptake
Prolonged inhibition of glutamate reuptake by l- trans-pyrrolidine-2,4-dicarboxylate (PDC), a specific glutamate transporter blocker, reduced the number of GABA positive neurons in a primary cerebellar culture by 54%. The disappearance of immunostaining for GABA was gradual and was partially prevent...
Gespeichert in:
Veröffentlicht in: | Brain research 2003-07, Vol.977 (2), p.209-220 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prolonged inhibition of glutamate reuptake by
l-
trans-pyrrolidine-2,4-dicarboxylate (PDC), a specific glutamate transporter blocker, reduced the number of GABA positive neurons in a primary cerebellar culture by 54%. The disappearance of immunostaining for GABA was gradual and was partially prevented by the
N-methyl-
d-aspartate (NMDA) receptor blocker, MK-801, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, NBQX. Combined blockade of NMDA and AMPA receptors restored the original proportion of GABAergic neurons observed in control cultures. Following the PDC exposure, expression of other GABAergic markers, such as glutamic acid decarboxylase (GAD) and vesicular GABA transporter (VGAT) was also dramatically decreased in an AMPA receptor-dependent manner. Loss of GABA or GAD immunostaining is commonly regarded as a sign of degeneration of GABAergic neurons. However, none of the GABAergic neurons were positive for propidium iodide uptake or showed abnormal nuclear morphology. Based on the above data we conclude that prolonged activation of ionotropic glutamate receptors by endogenously released glutamate was not toxic to cerebellar GABAergic neurons, but lead to the loss of their characteristic neurotransmitter phenotype. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/S0006-8993(03)02682-9 |