On functions of bounded variation

The recently introduced concept of ${\mathcal D}$ -variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from [20] whether every function of bounded Hardy–Krause variation is Borel measurable and has bounded ${\m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2017-05, Vol.162 (3), p.405-418
Hauptverfasser: AISTLEITNER, CHRISTOPH, PAUSINGER, FLORIAN, SVANE, ANNE MARIE, TICHY, ROBERT F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recently introduced concept of ${\mathcal D}$ -variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from [20] whether every function of bounded Hardy–Krause variation is Borel measurable and has bounded ${\mathcal D}$ -variation. Moreover, we show that the space of functions of bounded ${\mathcal D}$ -variation can be turned into a commutative Banach algebra.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004116000633