On functions of bounded variation
The recently introduced concept of ${\mathcal D}$ -variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from [20] whether every function of bounded Hardy–Krause variation is Borel measurable and has bounded ${\m...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2017-05, Vol.162 (3), p.405-418 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The recently introduced concept of
${\mathcal D}$
-variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from [20] whether every function of bounded Hardy–Krause variation is Borel measurable and has bounded
${\mathcal D}$
-variation. Moreover, we show that the space of functions of bounded
${\mathcal D}$
-variation can be turned into a commutative Banach algebra. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004116000633 |