Mechanochemical Tuning of Pyrene Absorption Spectrum Using Force Probes

Control of absorption spectra in chromophores is a fundamental aspect of many photochemical and photophysical processes as it constitutes the first step of the global photoinduced process. Here we explore the use of mechanical forces to modulate the light absorption process. Specifically, we develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2017-02, Vol.13 (2), p.727-736
Hauptverfasser: Fernández-González, Miguel Ángel, Rivero, Daniel, García-Iriepa, Cristina, Sampedro, Diego, Frutos, Luis Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control of absorption spectra in chromophores is a fundamental aspect of many photochemical and photophysical processes as it constitutes the first step of the global photoinduced process. Here we explore the use of mechanical forces to modulate the light absorption process. Specifically, we develop a computational formalism for determining the type of mechanical forces permitting a global tuning of the absorption spectrum. This control extends to the excitation wavelength, absorption bands overlap, and oscillator strength. The determination of these optimal forces permits us to rationally guide the design of new mechano-responsive chromophores. Pyrene has been chosen as the case study for applying these computational tools because significant absorption spectra information is available for the chromophore as well as for different strained derivatives. Additionally, pyrene presents a large flexibility, which makes it a good system to test the inclusion of force probes as the strategy to exert forces on the system.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.6b01020