Low complexity forward error correction for CELP-type speech coding over erasure channel transmission
One of the well-known problems of Code-Excited Linear Prediction (CELP)-type codec is its vulnerability to a frame erasure. When a frame is erased, the inter-frame dependency introduced by the Long Term Prediction causes a desynchronization of the Adaptive Codebook (ACB) which introduces in its turn...
Gespeichert in:
Veröffentlicht in: | International journal of speech technology 2016-12, Vol.19 (4), p.717-730 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the well-known problems of Code-Excited Linear Prediction (CELP)-type codec is its vulnerability to a frame erasure. When a frame is erased, the inter-frame dependency introduced by the Long Term Prediction causes a desynchronization of the Adaptive Codebook (ACB) which introduces in its turn an error propagation through the correctly received frames. In this paper, we propose a media-specific Forward Error Correction (FEC) method using a Pitch-Pulse Codebook (PPCB)-based approach to model the ACB contribution for voiced frame (frame onset) determined under Zero Crossing Rate constraint. The PPCB uses a single pulse optimized by Multipulse Maximum Likelihood Quantization algorithm to model the pitch-like contribution at the encoder side while the quantized version of that pulse will be sent as FEC information to resynchronize the ACB at the decoder side after a frame erasure. Through this approach a noticeable improvement of the synthesis speech quality is achieved under adverse channel conditions with the advantage of low computational complexity while the legacy bit-rate of the codec is kept unchanged. |
---|---|
ISSN: | 1381-2416 1572-8110 |
DOI: | 10.1007/s10772-016-9365-1 |