Finding Near-Optimal Regularization Parameter for Indoor Device-free Localization
Device-free Localization (DfL) systems offer real-time indoor localization of people without any electronic devices attached on their bodies. The human body influences the radio wave propagation between wireless links and changes the Received Signal Strength (RSS). Wireless Sensor Networks (WSNs) no...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2017, Vol.92 (1), p.197-220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Device-free Localization (DfL) systems offer real-time indoor localization of people without any electronic devices attached on their bodies. The human body influences the radio wave propagation between wireless links and changes the Received Signal Strength (RSS). Wireless Sensor Networks (WSNs) nodes easily measure these RSS changes and appropriate Radio Tomographic Imaging (RTI) algorithms can then process the RSS data and allow human localization. This paper investigates how to choose near-optimal regularization parameter during the regularization process for indoor DfL and describes an experimental indoor DfL setup realized with a Sun SPOT based WSN. The work elaborates on the numerical calculation of the near-optimal regularization parameter by usage of the trade-off curve criterion. The calculated parameter enables conclusive RTI image with sufficient localization precision for eHealth or other ambient-assisted-living applications where the error tolerance is at a scale of several tens of centimeters. The value for the regularization parameter matches the empirical derived value obtained in the authors’previous work. |
---|---|
ISSN: | 0929-6212 1572-834X |
DOI: | 10.1007/s11277-016-3846-z |