Reliable pose estimation of underwater dock using single camera: a scene invariant approach

It is well known that docking of Autonomous Underwater Vehicle (AUV) provides scope to perform long duration deep-sea exploration. A large amount of literature is available on vision-based docking which exploit mechanical design, colored markers to estimate the pose of a docking station. In this wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2016-02, Vol.27 (2), p.221-236
Hauptverfasser: Ghosh, Shatadal, Ray, Ranjit, Vadali, Siva Ram Krishna, Shome, Sankar Nath, Nandy, Sambhunath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that docking of Autonomous Underwater Vehicle (AUV) provides scope to perform long duration deep-sea exploration. A large amount of literature is available on vision-based docking which exploit mechanical design, colored markers to estimate the pose of a docking station. In this work, we propose a method to estimate the relative pose of a circular-shaped docking station (arranged with LED lights on periphery) up to five degrees of freedom (5-DOF, neglecting roll effect). Generally, extraction of light markers from underwater images is based on fixed/adaptive choice of threshold, followed by mass moment-based computation of individual markers as well as center of the dock. Novelty of our work is the proposed highly effective scene invariant histogram-based adaptive thresholding scheme (HATS) which reliably extracts positions of light sources seen in active marker images. As the perspective projection of a circle features a family of ellipses, we then fit an appropriate ellipse for the markers and subsequently use the ellipse parameters to estimate the pose of a circular docking station with the help of a well-known method in Safaee-Rad et al. (IEEE Trans Robot Autom 8(5):624–640, 1992 ). We analyze the effectiveness of HATS as well as proposed approach through simulations and experimentation. We also compare performance of targeted curvature-based pose estimation with a non-iterative efficient perspective-n-point (EPnP) method. The paper ends with a few interesting remarks on vantages with ellipse fitting for markers and utility of proposed method in case of non-detection of all the light markers.
ISSN:0932-8092
1432-1769
DOI:10.1007/s00138-015-0736-4