Stability and convergence of spectral radial point interpolation method locally applied on two‐dimensional pseudoparabolic equation
In this article, we study a spectral meshless radial point interpolation of pseudoparabolic equations in two spatial dimensions. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high‐order con...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2017-05, Vol.33 (3), p.724-741 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study a spectral meshless radial point interpolation of pseudoparabolic equations in two spatial dimensions. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high‐order convergence rate. The time derivatives are approximated by the finite difference time‐stepping method. The stability and convergence of this meshless approach are discussed and theoretically proven. Numerical results are presented to illustrate the theoretical findings. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 724–741, 2017 |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.22119 |