Stability and convergence of spectral radial point interpolation method locally applied on two‐dimensional pseudoparabolic equation

In this article, we study a spectral meshless radial point interpolation of pseudoparabolic equations in two spatial dimensions. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high‐order con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2017-05, Vol.33 (3), p.724-741
Hauptverfasser: Shivanian, Elyas, Aslefallah, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we study a spectral meshless radial point interpolation of pseudoparabolic equations in two spatial dimensions. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high‐order convergence rate. The time derivatives are approximated by the finite difference time‐stepping method. The stability and convergence of this meshless approach are discussed and theoretically proven. Numerical results are presented to illustrate the theoretical findings. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 724–741, 2017
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22119