A context-driven approach to image-based crack detection
We present a novel context-driven approach to image-based crack detection for automated inspection of aircraft surface and subsurface defects. In contrast to existing image-based crack detection methods, which rely mostly on low-level image processing and data-driven methods, our method explicitly i...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2016-10, Vol.27 (7), p.1103-1114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel context-driven approach to image-based crack detection for automated inspection of aircraft surface and subsurface defects. In contrast to existing image-based crack detection methods, which rely mostly on low-level image processing and data-driven methods, our method explicitly incorporates multiple high-level context into low-level processing. We present two classes of context: geometric/structural context and physical context. We formulate mathematically a sparse decomposition problem to incorporate the context and apply robust principal component analysis to decompose typical repetitive rivet regions into a normal component and a sparse component. Cracks are detected in the sparse component. By applying the proposed context-driven approach to coated and uncoated test specimens, we achieve significant reduction in false detections compared to the approach without exploiting context. |
---|---|
ISSN: | 0932-8092 1432-1769 |
DOI: | 10.1007/s00138-016-0779-1 |