Assembly Technologies for Integrated Transmitter/Receiver Optical Sub-Assembly Modules

We have succeeded in developing three techniques, a precise lens-alignment technique, low-loss built-in Spatial Multiplexing optics and a well-matched electrical connection for high-frequency signals, which are indispensable for realizing compact high-performance TOSAs and ROSAs employing hybrid int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Electronics 2017/02/01, Vol.E100.C(2), pp.187-195
Hauptverfasser: MOCHIZUKI, Keita, MURAO, Tadashi, SHIRAO, Mizuki, KAMO, Yoshiyuki, YASUI, Nobuyuki, YOSHIMOTO, Takahiro, ECHIZENYA, Daisuke, SHIMONO, Masaya, KODERA, Hidekazu, NOGAMI, Masamichi, ARUGA, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have succeeded in developing three techniques, a precise lens-alignment technique, low-loss built-in Spatial Multiplexing optics and a well-matched electrical connection for high-frequency signals, which are indispensable for realizing compact high-performance TOSAs and ROSAs employing hybrid integration technology. The lens position was controlled to within ±0.3 µm by high-power laser irradiation. All components comprising the multiplexing optics are bonded to a prism, enabling the insertion loss to be held down to 0.8 dB due to the dimensional accuracy of the prism. The addition of an FPC layer reduced the impedance mismatch at the junction between the FPC and PCB. We demonstrated a compact integrated four-lane 25 Gb/s TOSA (15.1 mm × 6.5 mm × 5.6 mm) and ROSA (17.0 mm × 12.0 mm × 7.0 mm) using the built-in spatial Mux/Demux optics with good transmission performance for 100 Gb/s Ethernet. These are respectively suitable for the QSFP28 and CFP2 form factors.
ISSN:0916-8524
1745-1353
DOI:10.1587/transele.E100.C.187