Identification of Receptor Binding to the Biomolecular Corona of Nanoparticles

Biomolecules adsorbed on nanoparticles are known to confer a biological identity to nanoparticles, mediating the interactions with cells and biological barriers. However, how these molecules are presented on the particle surface in biological milieu remains unclear. The central aim of this study is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-02, Vol.11 (2), p.1884-1893
Hauptverfasser: Lara, Sandra, Alnasser, Fatima, Polo, Ester, Garry, David, Lo Giudice, Maria Cristina, Hristov, Delyan R, Rocks, Louise, Salvati, Anna, Yan, Yan, Dawson, Kenneth A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomolecules adsorbed on nanoparticles are known to confer a biological identity to nanoparticles, mediating the interactions with cells and biological barriers. However, how these molecules are presented on the particle surface in biological milieu remains unclear. The central aim of this study is to identify key protein recognition motifs and link them to specific cell-receptor interactions. Here, we employed an immuno-mapping technique to quantify epitope presentations of two major proteins in the serum corona, low-density lipoprotein and immunoglobulin G. Combining with a purpose-built receptor expression system, we show that both proteins present functional motifs to allow simultaneous recognition by low-density lipoprotein receptor and Fc-gamma receptor I of the corona. Our results suggest that the “labeling” of nanoparticles by biomolecular adsorption processes allows for multiple pathways in biological processes in which they may be “mistaken” for endogenous objects, such as lipoproteins, and exogenous ones, such as viral infections.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.6b07933