ON CONJUGACY CLASSES OF THE KLEIN SIMPLE GROUP IN CREMONA GROUP
We consider countably many three-dimensional PSL2( $\mathbb{F}$ 7)-del Pezzo surface fibrations over ℙ1. Conjecturally, they are all irrational except two families, one of which is the product of a del Pezzo surface with ℙ1. We show that the other model is PSL2( $\mathbb{F}$ 7)-equivariantly biratio...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2017-05, Vol.59 (2), p.395-400 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider countably many three-dimensional PSL2(
$\mathbb{F}$
7)-del Pezzo surface fibrations over ℙ1. Conjecturally, they are all irrational except two families, one of which is the product of a del Pezzo surface with ℙ1. We show that the other model is PSL2(
$\mathbb{F}$
7)-equivariantly birational to ℙ2×ℙ1. Based on a result of Prokhorov, we show that they are non-conjugate as subgroups of the Cremona group Cr3(ℂ). |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089516000239 |