Fractional optimal control problem for differential system with delay argument
In this paper, we apply the classical control theory to a fractional differential system in a bounded domain. The fractional optimal control problem (FOCP) for differential system with time delay is considered. The fractional time derivative is considered in a Riemann-Liouville sense. We first study...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2017-03, Vol.2017 (1), p.1-19, Article 69 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we apply the classical control theory to a fractional differential system in a bounded domain. The fractional optimal control problem (FOCP) for differential system with time delay is considered. The fractional time derivative is considered in a Riemann-Liouville sense. We first study the existence and the uniqueness of the solution of the fractional differential system with time delay in a Hilbert space. Then we show that the considered optimal control problem has a unique solution. The performance index of a FOCP is considered as a function of both state and control variables, and the dynamic constraints are expressed by a partial fractional differential equation. The time horizon is fixed. Finally, we impose some constraints on the boundary control. Interpreting the Euler-Lagrange first order optimality condition with an adjoint problem defined by means of a right fractional Caputo derivative, we obtain an optimality system for the optimal control. Some examples are analyzed in detail. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-017-1121-6 |