Ion-conducting glass-ceramics for energy-storage applications
Glass-ceramics have gained considerable importance for applications in high-energy technology. Li- and Na-superionic ion-conducting ceramics find widespread use in lithium- and sodium-ion batteries as separators, solid electrolytes, and cathode materials. The ionic conductivity of these materials is...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2017-03, Vol.42 (3), p.206-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glass-ceramics have gained considerable importance for applications in high-energy technology. Li- and Na-superionic ion-conducting ceramics find widespread use in lithium- and sodium-ion batteries as separators, solid electrolytes, and cathode materials. The ionic conductivity of these materials is influenced by crystal chemical parameters and can be further optimized via microstructural control using glass-ceramic processing. This article summarizes the most promising glass-ceramic material systems currently in use, detailing recent progress in understanding their structure–property–performance relationships. We also highlight the power and potential of solid-state nuclear magnetic resonance techniques for providing quantitative knowledge about structure, phase composition, and ion dynamics in these materials. |
---|---|
ISSN: | 0883-7694 1938-1425 |
DOI: | 10.1557/mrs.2017.30 |