Random matrices: tail bounds for gaps between eigenvalues

Gaps (or spacings) between consecutive eigenvalues are a central topic in random matrix theory. The goal of this paper is to study the tail distribution of these gaps in various random matrix models. We give the first repulsion bound for random matrices with discrete entries and the first super-poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2017-04, Vol.167 (3-4), p.777-816
Hauptverfasser: Nguyen, Hoi, Tao, Terence, Vu, Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gaps (or spacings) between consecutive eigenvalues are a central topic in random matrix theory. The goal of this paper is to study the tail distribution of these gaps in various random matrix models. We give the first repulsion bound for random matrices with discrete entries and the first super-polynomial bound on the probability that a random graph has simple spectrum, along with several applications.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-016-0693-5