Heterogeneities in Polymer Structural and Dynamic Properties in Graphene and Graphene Oxide Nanocomposites: Molecular Dynamics Simulations

The effect of graphene (G) and graphene oxide (GO), used as the nanofiller in polymer nanocomposites (NC), on the structural and dynamic properties of polymer chains, has been studied by means of molecular dynamics (MD) simulations. Two polymers, i.e., poly(propylene) and poly(vinyl alcohol), are em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2017-03, Vol.26 (2), p.np-n/a
Hauptverfasser: Azimi, Majid, Mirjavadi, Seyed Sajad, Hamouda, Abdel Magid Salem, Makki, Hesam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of graphene (G) and graphene oxide (GO), used as the nanofiller in polymer nanocomposites (NC), on the structural and dynamic properties of polymer chains, has been studied by means of molecular dynamics (MD) simulations. Two polymers, i.e., poly(propylene) and poly(vinyl alcohol), are employed as matrices to cover a wider range of polymer–filler interactions. The local structural properties, e.g., density profile, average Rg, and end‐to‐end distance as well as dynamic properties, e.g., estimated translational and orientational relaxation times, of polymer chains are studied. In addition, the interaction energies are estimated between polymers and nanofillers for different hybrid systems using MD pullout simulations. Strong heterogeneities in polymer structural and dynamic properties have been observed such that chains are more oriented and exhibit slower dynamics in the vicinity of the nanofillers (G and GO) as compared to bulk. It is also found that the orientation of polymer chains at the interface is more influenced by the nanofiller in such a way that the more oriented polymer chains are observed in G‐based NC for both polymers. However, the immobilization of polymer chains at the interface proves to be very much dependent on the polymer–filler interactions. The effect of graphene and graphene oxide on the structural and dynamic properties of poly(propylene) and poly(vinyl alcohol), are studied by means of molecular dynamics simulations. Strong heterogeneities in polymer properties are found such that chains are more oriented and exhibit slower dynamics close to nano‐fillers. Energetic analysis proves different roots for heterogeneity in structural and dynamic properties.
ISSN:1022-1344
1521-3919
DOI:10.1002/mats.201600086