Uniform, on the entire axis, convergence of the spectral expansion for Schrödinger operator with a potential-distribution
A uniform, on ℝ, estimate for the increment of the spectral function θ(λ; x, y ) at x = y is proved for the self-adjoint Schrödinger operator A defined on the entire axis ℝ by the differential operation (− d / dx ) 2 + q ( x ) with a potential-distribution q ( x ) that uniformly locally belongs to t...
Gespeichert in:
Veröffentlicht in: | Differential equations 2017-02, Vol.53 (2), p.180-191 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A uniform, on ℝ, estimate for the increment of the spectral function θ(λ;
x, y
) at
x
=
y
is proved for the self-adjoint Schrödinger operator A defined on the entire axis ℝ by the differential operation (−
d
/
dx
)
2
+
q
(
x
) with a potential-distribution
q
(
x
) that uniformly locally belongs to the space
W
2
−1
. As a consequence, it is shown that for any function
f
(
x
) from the domain of power Aα of the operator with α > 1/4, the spectral expansion of the function that corresponds to the operator
A
is convergent absolutely and uniformly on the entire axis ℝ. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266117020045 |