Uniform, on the entire axis, convergence of the spectral expansion for Schrödinger operator with a potential-distribution

A uniform, on ℝ, estimate for the increment of the spectral function θ(λ; x, y ) at x = y is proved for the self-adjoint Schrödinger operator A defined on the entire axis ℝ by the differential operation (− d / dx ) 2 + q ( x ) with a potential-distribution q ( x ) that uniformly locally belongs to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2017-02, Vol.53 (2), p.180-191
1. Verfasser: Kritskov, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A uniform, on ℝ, estimate for the increment of the spectral function θ(λ; x, y ) at x = y is proved for the self-adjoint Schrödinger operator A defined on the entire axis ℝ by the differential operation (− d / dx ) 2 + q ( x ) with a potential-distribution q ( x ) that uniformly locally belongs to the space W 2 −1 . As a consequence, it is shown that for any function f ( x ) from the domain of power Aα of the operator with α > 1/4, the spectral expansion of the function that corresponds to the operator A is convergent absolutely and uniformly on the entire axis ℝ.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266117020045