Calcium Dependence of the Interaction between Calmodulin and Anthrax Edema Factor
Edema factor (EF), a toxin from Bacillus anthracis (anthrax), possesses adenylyl cyclase activity and requires the ubiquitous Ca2+-sensor calmodulin (CaM) for activity. CaM can exist in three major structural states: an apo state with no Ca2+ bound, a two Ca2+ state with its C-terminal domain Ca2+-l...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-08, Vol.278 (31), p.29261-29266 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Edema factor (EF), a toxin from Bacillus anthracis (anthrax), possesses adenylyl cyclase activity and requires the ubiquitous Ca2+-sensor calmodulin (CaM) for activity. CaM can exist in three major structural states: an apo state with no Ca2+ bound, a two Ca2+ state with its C-terminal domain Ca2+-loaded, and a four Ca2+ state in which the lower Ca2+ affinity N-terminal domain is also ligated. Here, the interaction of EF with the three Ca2+ states of CaM has been examined by NMR spectroscopy and changes in the Ca2+ affinity of CaM in the presence of EF have been determined by flow dialysis. Backbone chemical shift perturbations of CaM show that EF interacts weakly with the N-terminal domain of apoCaM. The C-terminal CaM domain only engages in the interaction upon Ca2+ ligation, rendering the overall interaction much tighter. In the presence of EF, the C-terminal domain binds Ca2+ with higher affinity, but loses binding cooperativity, whereas the N-terminal domain exhibits strongly reduced Ca2+ affinity. As judged by chemical shift differences, the N-terminal CaM domain remains bound to EF upon subsequent Ca2+ ligation. This Ca2+ dependence of the EF-CaM interaction differs from that observed for most other CaM targets, which normally interact only with the Ca2+-bound CaM domains and become active following the transition to the four Ca2+ state. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M302837200 |