Theory and Electrochemistry of Cytochrome c

Extensive simulations of cytochrome c in solution are performed to address the apparent contradiction between large reorganization energies of protein electron transfer typically reported by atomistic simulations and much smaller values produced by protein electrochemistry. The two sets of data are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2017-05, Vol.121 (19), p.4958-4967
Hauptverfasser: Seyedi, Salman S, Waskasi, Morteza M, Matyushov, Dmitry V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extensive simulations of cytochrome c in solution are performed to address the apparent contradiction between large reorganization energies of protein electron transfer typically reported by atomistic simulations and much smaller values produced by protein electrochemistry. The two sets of data are reconciled by deriving the activation barrier for electrochemical reaction in terms of an effective reorganization energy composed of half the Stokes shift (characterizing the medium polarization in response to electron transfer) and the variance reorganization energy (characterizing the breadth of electrostatic fluctuations). This effective reorganization energy is much smaller than each of the two components contributing to it and is fully consistent with electrochemical measurements. Calculations in the range of temperatures between 280 and 360 K combine long, classical molecular dynamics simulations with quantum calculations of the protein active site. The results agree with the Arrhenius plots for the reaction rates and with cyclic voltammetry of cytochrome c immobilized on self-assembled monolayers. Small effective reorganization energy, and the resulting small activation barrier, is a general phenomenology of protein electron transfer allowing fast electron transport within biological energy chains.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.7b00917