The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels
Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N -methyl- d -aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer’s disease, dementia, and peripheral pain. Oxidative stress activates Ca...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2017-05, Vol.54 (4), p.2852-2868 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inhibition of Ca
2+
entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of
N
-methyl-
d
-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer’s disease, dementia, and peripheral pain. Oxidative stress activates Ca
2+
-permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18–24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca
2+
concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats.
Graphical abstract
Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus neurons of aged rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress, although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin, and it is blocked by capsazepine (CPZ). The beta-amyloid plaque induces oxidative stress in hippocampus. SCOP can result in augmented ROS release in hippocampal neurons, leading to Ca
2+
uptake through TRPM2 and TR |
---|---|
ISSN: | 0893-7648 1559-1182 |
DOI: | 10.1007/s12035-016-9835-0 |