Association of genetic polymorphisms of de novo nucleotide biosynthesis with increased CHD susceptibility in the northern Chinese population

Congenital heart disease (CHD) is one of most prevalent birth defects in the world. However, the underlying molecular mechanism(s) have not been fully understood. Here we report that increased CHD susceptibility is associated with genetic polymorphisms for de novo nucleotide biosynthesis in northern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical genetics 2017-05, Vol.91 (5), p.748-755
Hauptverfasser: Jiang, Y.‐C., Kuang, L.‐L., Sun, S.‐N., Duan, W.‐Y., Qiao, B., Wang, H.‐Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Congenital heart disease (CHD) is one of most prevalent birth defects in the world. However, the underlying molecular mechanism(s) have not been fully understood. Here we report that increased CHD susceptibility is associated with genetic polymorphisms for de novo nucleotide biosynthesis in northern Chinese population, which has been reported with lower plasma folate levels. Nine tagSNPs of four genes (GART, ATIC, MTHFD1 and SHMT1) in de novo nucleotide biosynthesis were sequenced in 802 sporadic CHD patients and 1093 controls from two Han Chinese populations, located in north China (Shandong) and South China (Shanghai), respectively. Six SNPs were found to be significantly associated with CHDs or septation defects only in the Shandong population dataset, but none displayed significant association with any CHDs in the Shanghai population dataset as well as in the combined dataset. We also showed that the minor A allele of rs7279549 in GART reduced transcriptional activity and displayed lower affinity for unknown transcription factor(s), demonstrating the allele is a functional risk factor for CHD in Shandong population. Our study indicates that dysregulation of de novo nucleotide biosynthesis pathway may conditionally contribute to CHD pathogenesis in northern Chinese.
ISSN:0009-9163
1399-0004
DOI:10.1111/cge.12874